If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10p^2+2p+1400=0
a = -10; b = 2; c = +1400;
Δ = b2-4ac
Δ = 22-4·(-10)·1400
Δ = 56004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56004}=\sqrt{4*14001}=\sqrt{4}*\sqrt{14001}=2\sqrt{14001}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{14001}}{2*-10}=\frac{-2-2\sqrt{14001}}{-20} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{14001}}{2*-10}=\frac{-2+2\sqrt{14001}}{-20} $
| 15=0.5+1.4x+10 | | 5.3x=-2.65 | | x+1/4=-1/6 | | -4(3x+10)-2x=124 | | -10p+2p+1400=0 | | (2x+3)+(4x-6)= | | 4x−7=41 | | 2x+(4x)=6 | | d/3+7=20 | | 5s=4500 | | -3/4b=-3 | | 74+3x-18=180 | | 16x+(18x+2)=36x-6 | | 18=-5b-27 | | d3+7=20 | | -7x-3(3x-14)=202 | | 8b+5=13 | | 55.5+6x=104.50 | | 1x-x=0.2 | | 2x-9=19-8x | | (16/3)x=48 | | -5x-12=32 | | x+27+2x-18=180 | | (-8a-8)=(2a) | | -0.025x^2+12x-1000=0 | | 11.01x-10.01x=11.01-10.81 | | .7x+3.79=74 | | 2k/4-28-2k/3=37 | | (X+12)+(4x+8)=180 | | 0=-4.9t^2+3.28t+1.7 | | 2(b+6)=18 | | X+2x+3x=180000 |